Name:	 	
Class:		

SYDNEY TECHNICAL HIGH SCHOOL

YEAR 12 HSC ASSESSMENT TASK 3

JUNE 2012

MATHEMATICS Extension 1

Time Allowed:

70 minutes

Instructions:

- All necessary working must be shown. Marks may be deducted for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
- Start each question on a new page.
- Standard integrals can be found on the last page.
- Write in blue or black pen only

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Total
/10	/10	/10	/10	/10	/10	/60

a) Find the exact value of

$$\cos^{-1}(\frac{-\sqrt{3}}{2})$$

b) Differentiate the following

(i)
$$y = x e^{x^2}$$

1

(ii)
$$y = cos^{-1} 3x$$

(iii)
$$y = \log_e \frac{x+4}{x^2}$$

(iv)
$$y = \log_a x$$

2

c) Simplify
$$\log_a x^4 \div \log_a x^{\frac{2}{3}}$$

Question 2

(10 marks)

Marks

Consider the function $f(x) = \frac{x}{x-3}$

(i) Show that f'(x) < 0 for all x in the domain

2

(ii) Find the equation of the horizontal asymptote

- 1
- (iii) Without using any further calculus sketch the graph of y = f(x) showing asymptotes and the x and y intercepts
- 2

(iv) Explain why f(x) has an inverse function $f^{-1}(x)$

1

(v) Find an expression for $f^{-1}(x)$

2

(vi) For what value(s) of x does $f(x) = f^{-1}(x)$?

2

2

- a) Sand is poured into a conical heap at a constant rate of $0.6 m^3$ /s so that the height of the heap is always equal to twice the radius of the base.
 - (i) Show that $\frac{dV}{dr} = 2 \pi r^2$
 - (ii) When the heap is 5m high, find the rate of increase of the radius of the base.
 - b) Find
 - $(i) \qquad \int \frac{x}{x^2 + 4} \ dx$
 - (ii) $\int \frac{1}{x^2+4} dx$
 - (iii) $\int \frac{dx}{\sqrt{1-4x^2}}$
 - c) Sketch $y = \sin^{-1}(2x 1)$ showing all important features

Question 4 (10 marks)

Marks

2

2

- a) Find m if $x^{m+2} = e^{6lnx}$ where x > 0
- b) Find the general solution of $2 \sin x = -1$
- c) Consider the function $y = \frac{\ln x}{x}$ where x > 0
 - (i) The function has a maximum turning point in the domain x > 0. Find its coordinates.
 - (ii) Find $\lim_{x \to \infty} \frac{\ln x}{x}$
 - (iii) Sketch the curve showing all important features 2
- d) Let $\tan^{-1} x = \infty$. Find an expression for $\cos \alpha$ in terms of x given that α is acute.

Ques	tion 5 (10 marks)	Marks
a)	Evaluate $\int_1^3 \frac{dx}{(1+x)\sqrt{x}}$ using the substitution $u = \sqrt{x}$ or otherwise. Leave your answer in exact form.	3
b)	Find $\int \cos^2 \frac{x}{2} dx$	2
c)	Given $f(x) = 3\cos^{-1}(\sin 2x) - 2\sin^{-1}(\cos 3x)$, show that $f(x)$ is a constant function by finding $f'(x)$	3
d)	Using the table of standard integrals, find the exact value of	2
	$\int_0^{\frac{\pi}{8}} \sec 2x \ \tan 2x \ dx$	

Que	estion 6	(10 marks)	Marks
a)	(i)	Express $sinx - cos x$ in the form $R sin(x-\alpha)$ where $R > 0$ and α is acute.	2
	(ii)	Hence solve $\sin x - \cos x = -1$ over the domain $0 \le x \le 2\pi$	2
b)	Assume that at time t years the population $P(t)$ of a town is given by $P(t) = 50000 + Ae^{kt}$ where A and k are constants.		
	(i)	Show that $P(t)$ satisfies the equation $P'(t) = k [P(t) - 50000]$	1
	(ii)	Given that $P(0) = 70000$, evaluate A	1
	(iii)	If $P(8) = 150000$, find k correct to 4 decimal places	2
	(iv)	How many years will it take for the population to reach 200000?	

2

(give your answer correct to the nearest integer)

Teacher's Name: Student's Name/Nº: -50000 e" = 20000 since 0=50000+20000 Ci'ii) (N) 200000 = 50000 + 20000 e0.2012+ 150000 = 20000 e0.2012+ $7.5 = e^{0.2012+}$ loge 7.5 = 0.2012+